A Fixed Point Approach to the Stability of a Functional Equation of the Spiral of Theodorus
نویسندگان
چکیده
منابع مشابه
A fixed point approach to the Hyers-Ulam stability of an $AQ$ functional equation in probabilistic modular spaces
In this paper, we prove the Hyers-Ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$
متن کاملA FIXED POINT APPROACH TO THE INTUITIONISTIC FUZZY STABILITY OF QUINTIC AND SEXTIC FUNCTIONAL EQUATIONS
The fixed point alternative methods are implemented to giveHyers-Ulam stability for the quintic functional equation $ f(x+3y)- 5f(x+2y) + 10 f(x+y)- 10f(x)+ 5f(x-y) - f(x-2y) = 120f(y)$ and thesextic functional equation $f(x+3y) - 6f(x+2y) + 15 f(x+y)- 20f(x)+15f(x-y) - 6f(x-2y)+f(x-3y) = 720f(y)$ in the setting ofintuitionistic fuzzy normed spaces (IFN-spaces). This methodintroduces a met...
متن کاملA fixed point approach to the stability of additive-quadratic-quartic functional equations
In this article, we introduce a class of the generalized mixed additive, quadratic and quartic functional equations and obtain their common solutions. We also investigate the stability of such modified functional equations in the non-Archimedean normed spaces by a fixed point method.
متن کاملHyers–Ulam–Rassias stability of impulsive Volterra integral equation via a fixed point approach
In this paper, we establish the Hyers--Ulam--Rassias stability and the Hyers--Ulam stability of impulsive Volterra integral equation by using a fixed point method.
متن کاملFixed point approach to the Hyers-Ulam-Rassias approximation of homomorphisms and derivations on Non-Archimedean random Lie $C^*$-algebras
In this paper, using fixed point method, we prove the generalized Hyers-Ulam stability of random homomorphisms in random $C^*$-algebras and random Lie $C^*$-algebras and of derivations on Non-Archimedean random C$^*$-algebras and Non-Archimedean random Lie C$^*$-algebras for the following $m$-variable additive functional equation: $$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008